Reduced oxygen stress promotes propagation of murine postnatal enteric neural progenitors in vitro.
نویسندگان
چکیده
BACKGROUND Neural stem and progenitor cells of the Enteric Nervous System (ENS) are regarded as a novel cell source for applications in regenerative medicine. However, improvements to the current ENS cell culture protocols will be necessary to generate clinically useful cell numbers under defined culture conditions. Beneficial effects of physiologically low oxygen concentrations and/or the addition of anti-oxidants on propagation of various types of stem cells have previously been demonstrated. In this study, we tested the effects of such culture conditions on ENS stem and progenitor cell behavior. METHODS Enteric neural progenitor cells were isolated from postnatal day 3 mouse intestine and propagated either as monolayers or neurosphere-like bodies. The influence of hypoxic culture conditions and/or anti-oxidants on enteric cell propagation were studied systematically using proliferation, differentiation and apoptosis assays, whereas effects on gene expression were determined by qRT-PCR, western blot, and immunocytochemistry. KEY RESULTS Both hypoxic culture conditions and anti-oxidants supported a significantly improved enteric cell propagation and the generation of differentiated neural cell types. Enteric neural progenitors were shown to be specifically vulnerable to persistent oxidative stress. CONCLUSIONS & INFERENCES Our findings are consistent with previous reports of improved maintenance of brain stem cells cultured under reduced oxygen stress conditions and may therefore be applied to future cell culture protocols in ENS stem cell research.
منابع مشابه
Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury.
The enteric nervous system (ENS) in mammals forms from neural crest cells during embryogenesis and early postnatal life. Nevertheless, multipotent progenitors of the ENS can be identified in the adult intestine using clonal cultures and in vivo transplantation assays. The identity of these neurogenic precursors in the adult gut and their relationship to the embryonic progenitors of the ENS are ...
متن کاملTransplanted progenitors generate functional enteric neurons in the postnatal colon.
Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnata...
متن کاملNeural progenitors from isolated postnatal rat myenteric ganglia: expansion as neurospheres and differentiation in vitro.
Identification of the stem cell niche is crucial for understanding the factors that regulate these cells. Rodent enteric neural crest-derived stem cells have previously been isolated by flow cytometry and culture of cell suspensions from the outer smooth muscle layers or the entire gut wall from postnatal and adult animals. Such cell suspensions contain a mixture of cell types, including smooth...
متن کاملIsolation, Expansion and Transplantation of Postnatal Murine Progenitor Cells of the Enteric Nervous System
Neural stem or progenitor cells have been proposed to restore gastrointestinal function in patients suffering from congenital or acquired defects of the enteric nervous system. Various, mainly embryonic cell sources have been identified for this purpose. However, immunological and ethical issues make a postnatal cell based therapy desirable. We therefore evaluated and quantified the potential o...
متن کاملComparative Microarray Analysis of Proliferating and Differentiating Murine ENS Progenitor Cells.
Postnatal neural progenitor cells of the enteric nervous system are a potential source for future cell replacement therapies of developmental dysplasia like Hirschsprung's disease. However, little is known about the molecular mechanisms driving the homeostasis and differentiation of this cell pool. In this work, we conducted Affymetrix GeneChip experiments to identify differences in gene regula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society
دوره 23 10 شماره
صفحات -
تاریخ انتشار 2011